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ABSTRACT

The pushback estimates are defined by a prel-

ininary data modification followed by the applica-

tion of a robust statistic to the modified data.

The form of the pushback estimate depends upon the
choice of a scale estimate for the original data,

a set of central values of order statistics, and a
constant multiplier. Particular forms of the
pushback estimates are both simple and perform rather
well relative to a good estimate in the w-estimate

or M-estimate category.
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l. Introduction.

We have some quite good estimates of location in the
w-estimate and M-estimate category. The pushback estimates
are another category of estimates -- one that appears very
different -- that satisfies two requirements. First, the
pushback estimates of a certain form perform well over a
wide range of distributions. Second, the estimates are

relatively simple to understand and use.

Monte Carlo studies indicate that a well-chosen form of
the pushback achieves a maximin efficiency (relative to the
wb-biweight) of 89% for sample size 20. This performance is
measured over the set of distributions including the Gaus-

sian, one wild Gaussian, mixture, slacu, and slash.
2., The pushback.

The pushback procedures are based on preliminary data
modification. The order statistics of the data are modified
before a simple robust estimate of location is applied.

More formally our procedure is as follows; Suppose we are

given n observations,

y1' YZI LA 4 Yn ’

from a particular situation {fi: i=l, ..., n} where the fi
are location-scale densities., The situation may be either
simple or compound (Bruce, Pregibon, Tukey (1981)). The

procedure modifies the order statistics of the n observations




y(l), y(2), «ee, y(n) ,
by sybtracting some function of i, p(i),
y(1)-p(1), y(2)-p(2), «.., y(n)=p(n) .
The form of p(i) considered is:
p(i) = kes-a(i)

where k is a constant, s is an estimate of the scale of the
data {y(i)} and {a(i)} is a set of central values of order
statistics from a suitable unit distribution. We then apply
T, a robust estimate, to the set {y(i)-k-s-a(i)} to deter-

mine.a location estimate for the distribution of the {y(i)}.

We will call this procedure the pushback T when the
estimate T is applied to the modified data, or pushback when
we have no particular estimate in mind. The pushback was

previously studied by L. Nanni (Nanni (1979)).
3. Simulation Cases.

Various forms of

¢ the location estimate

¢ the central order-statistic values

¢ the scale estimate
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The subscript j denotes the number of the iteration. Itera-
tion to tolerance is stopped when lTj-Tj_lI £ .0005 or when

j=20, whichever occurs first.

Central values of order statistics for a sample of size
n from a Gaussian, logistic, and a cosine-~bell distribution,
each with mean zero and variance one, were used. For the
Gaussian and logistic distributions, expected values of
order statistics were chosen as the central value ((Owen
(1962)) and (Birnbaum and Dudman (1963)). For the cosine-

bell density,

- L
N O L N RN
2 2 coslYy 3 \n2-8  \|x?-8
0 otherwise
. 1 .
-1,173 -1,'73
the values F (——T) were used. F (__T) has been shown
n+§ n+§

to be a good approximation to the median of y(i). Letting

a(i) ,a(i)log, and a(i)cob denote the central value of the

Gau
ith order statistic from a Gaussian, logistic, and cosine-

bell distribution, respectively, and noting that a(i)

-a(n+i-1) because of symmetry, we see in table 1 that
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Ia(i)Gaul < Ia(i)cobl

Ia(i)GauI > Ia(i)logl

|a(i)Gau| > |a(i)cob| i=1l,20

|a(i)Gau| < |a(i)10g|.

The differences between the Gaussian {a(i)} and the two
other sets of {a(i)} can be seen in the plot of log aQ(j)

against log a (i) (figure 1) for 0={log,cob}.

Gau

Many scale estimates were tested. These included the
median jump ratio, the median absolute deviation, and vari-
ous other percentage points of {ly(i)-med{yi}l}. The median

jump ratio (MJR) is defined as

an-i+l)fY(i)}
a(n-i+l)-a(i)

med {
n

i=1'o-o’_2'

when n is even, as is the case for the simulations discussed
here. The MJR used the same {a(i)} as are used in pushing
back the data and is thus matched to the specific pushback
form. The median absolute deviation from the median (MAD)
is defined as med{|y(i)-med{y(i)}l}, i.e., the 50% point of
{ly(i)-med{y(i)}!1}. Other percent points of {|y(i) -
med(y(i))|} were used. The complete set of lower percentage
points was P= 37.,5,45,50,55,70,75,80,85, and 90. For exam-
ple, the 45% point is z(9) where {z(i)} are the ordered set
{ly(i)-med{y(i)}!}. We will refer to P% point of {ly(i)-
med{y(i)}|l} as P%AD.
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In order to evaluate the performance of the pushback in
its various forms, data were simulated from six situations,
The situations and their densities for simple and compound

situations are:

Gaussian (Gaus) exp{-(y)2/2} = G(0,1)

—

2n

slash (slash) = ratio of an independent Gaussian
to unif(0,1)

;Tgéfi-[l-exp{~%y2}] for v # 0
wy

it
QO

for vy
2\1{2w

1

Cauchy (Cauchy) —-
m(l+y“)

one wild Gaussian, scale 10 (OWG) (n-1)G(0,1) + 1G(0,100)

mixture, scale 10 (mix) .95 G(0,1)+.05G(0,100)

L}

slacu (slacu) ratio of independent Gaussian to

(unif(0,1))1/3

6 2 3 2
—4Tr—(l-exP{~y /2} = —=—exp{-y“/2}
y 2w \ 12wy

i i " orners", the
The six distributions above include the three c¢ ’

i i ree
Gaussian, slash, and one-wild Gausslan. Each of these th

ikely to
represents one extreme of a data type we regard as likely

. . . to
be encountered in practice. Gaussian data is considered

i i orm against which we
be extremely "nice"” data and is the n g

judge data from other distributions, for example, saylng

v’«"tm’ o, 13&?“.:‘ =




1
O
) .

i data is from a distribution with "heavier tails" than the
Gaussian. One-wild Gaussian (scale 10) data has one obser-
vation from a Gaussian distribution with mean zero and vari-
ance 100 and the rest from a standard Gaussian and so, is
very likely to have one outlier. The slash density behaves
as the Gaussian does in the middle and as the Cauchy does in
the tails. The first part of this statement can be seen by

looking at

hatmaden. ik )

: ( 1Tim :—l-:l_——z-(l—exp(-%yz))
! T .0 2wy
< ‘ Y

which is, ignoring multiplicative constants, exp(-%yz), the
form of the Gaussian density. Similarly, the second part of

the statement is seen by looking at

| |
lim and 1lim | 2(l exp(——y DN
yl - yT - |\|2uy |

This shows that the slash tail-density decreases as y_2, as

does the Cauchy. Thus the slash satisfies the empirical

vy

observation that data is usually Gaussian in the middle,
,:‘ while having much longer tails than the Gaussian. The three
corners are good quantitative standards against which to

e seek good performance.

The remaining three densities have been included to
gain further information. The Cauchy is included in order

3 to understand how the pushback works on data from a long-

tailed but peaked distribution. We expect, however, to

'1 encounter Cauchy-like data rarely in practice, and, thus, do

RN e |
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not seek good performance against the Cauchy. The mixture
at scale 10, because it is a milder form of the one-wild
Gaussian at scale 10, gives information on the transition

from the Gaussian to the OWG. The tail-density of the slacu

decreases as t_4 in comparison to the slash tail-density

which decreases as t-z. The slacu tail-density is like a tq

tail-density. (Note that t, tends to behave like 15G(0,1) +

3
5G(0,9) (F. Hampel (1979))). These facts indicate that the
slacu should give us information on the transition from

G(0,1) to slash and, in a less clear way, on the transition

from G(0,1) to a mixture-like density.

Cases for which the simulations were performed are
listed in table 2. All are for sample size twenty. Vari-
ances were calculated using a swindle (G. Simon (1975)) and
are based on 500 samples. The computations discussed here
were done on the Statistics Department PDP11/40. Gaussian
samples were generated via an algorithm due to Forsythe and
Ahrens-Dieter (J. H. Ahrens and U. Dieter (1974)). Uniform
random numbers were generated using Knuth's algorithm M

(Knuth (1969)).




Table 2

Simulation Cases

mjr-gaus-g;c(.8,1.0,1.2);;s1(.4,.8,1.0,1.2)
m(. 4,. 71.0,1.2,2,0);w(.4,.8,1.0,1.2)
mir-log-g;c;sl; m,w(. y1.0,2.2)
mad-gaus-g;c; sl m;w(.8,1.0,1.2),((.4,.8,1.2,2.0)/.6745)
"

mad-log- "
mjr gaus*-g;c;sl; m w(.4,.8,1.0,1.2,2.0)
mjr gaus**- "

mjr-log*- " "
mjr-cob-g;c;sl;m;w;su(. 4,.8 1.0)
mjr-gaus***- »

37. S%AD-gaus—g,c sl;m;w;sul(. 4,.8 1.0,1.2)
45%AD-qgaus-
55%AD-gaus-
70%AD-gaus-
75%AD-qgaus-
80%AD-gaus-
85%AD-gaus-
90%AD-gaus-

T o3

mjr—gaus g:;c;sl; m,w su(.4,.8,1.0,1.2,2.0)
m]t log-
mjr-gaus*-
mjr-gaus**-
mjr-log*- "
mad-gaus-g;c;sl; m w((.4,.8,1.0,
mad-log-

mjr cob-g;c;sl;m;w;su(. 4,.8 1. O)
mjr-gaus***- "

37.5%AD-gaus- g,c sl;m;w;su(.4,.8,1.0,1.2)
45%AD-gaus- "
55%AD-gaus-
70%Ad-gaus-
75%AD-gaus-
80%AD-gaus-
85%AD-gaus-
90%AD-gaus-

H:::ao

-0 g

.2,2.0)/.6745)

o =0 £ -0

mjr-gaus-g(.4,.8,1.0,1.2);c(.8,1.0,1.2);s1(.4,.8,1.0,1.2);
m;w(.8,1.0,1.2);su(.4,.8,1.0,1.2,2.0)

mjr-log-g;c;sl;m;w(.8,1.0,1.2);su(.4,.8,1.0,1.2,2.0)

mad-gaus-g; c; sl m w(. 8 1. 0 1.2)

mad-log-

mjr gaus*-g;c;sl; m w;su(.4,.8, 1 0,1.2,2.0)

mjr gaus**-

mjr-log*- "

-9

IO 0 £ -0

*] smooth
**2 smooths
***pushback on inner 16 only
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4, Discussion of the Simulation Results

The results of the simulation cases listed in table 2
are given in figures 2-9 and in tables 3 and 4. For exam-
ple, the results of the simulations for the first line in
table 2 are given in figure 2., The scale estimate is MJR,
the {a(i)} are the central order-statistic values from a
Gaussian, the location estimate is the median, and the simu-
lations were done for various k-values for Gaussian, Cauchy,
slash, mix, and OWG data distributions. For ease of nota-
tion, we will refer to this pushback form as the MJR-Gaus~-
pushback median. In general, we refer to a scale estimate -
{a(i)} distribution-pushback location estimate, the k-value

and data-distribution being specified when necessary.

In figure 2, the first number listed at each k-value,
data-distribution combination is the variance of the MJR-
Gaus-pushback-median. The variance of this variance esti-
mate is shown in parentheses here as it is in the similar
figures'which follow. The data-distribution is represented
by the angle of the arc on the set of concentric circles and
the k value is indicated by the circle radius. The inner
circle contains values for a non-pushback estimate. For
example, .0731 is the estimated variance of the median when

the data is Gaussian.

Figure 2 also gives the MJR-logistic-pushback median

variances. These values are the second entry in the figure.
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.791(33618)
,787(32657)

726(35790)
.723(35279)

.549(17309)
.559(17716)

S VA2 £ Y2 Ui RSO 3 : --L 0851 .0526 .0530
- (737) (680) (312) ---  (41) caucheX (3 --- (0) (0)  (n)
- Y4 453 41 .de M T =7 ATORY 3

(698) (682) (339) --- e (D) (0)  (0)

.0646(1)
.0650(1)

.0638(0)
.0646(1)

.0658(3)
.0661(3)

.0675(9)
.0676(8

.0724(24)
.0726(23)

.0662(1)
.0664(1)

......

. . : : A
Figure 2: Variance and variance of variance x 10
(in parentheses) of MJR-Gaus-pushback
med ian and MJR-log-pushback median
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Similarly, the MJR-Gaus- and MJR-logistic-pushback wé-
biweight and 9-biweight variances are given in figures 3 and

4, respectively.

Table 5 shows the optimum k-value (the k-value with
minimum variance) and the corresponding optimum variance for
a given scale estimate, {a(i)} distribution, location esti-
mate and data distribution. From table 5 and figures 2-4,

we see the following:

¢ First, for MJR and each of the median, wé6-biweight,
and 9-biweight the variance at the optimum k-value for
the Gaussian is less than that at the optimum k-value

for the logistic {a(i)}.

¢ Second, for each of the location estimates, the simu-
lations indicate that the optimum k-values for a given
data-distribution for the the logistic and Gaussian

fa(i)} versions of the pushback with s = MJR are the

same.

¢ Also, looking at lines 1, 15, and 29 of table 5, we
see that the median and wé6-biweight have less-changing
optimum k values across distributions than/;bgiweight.
Approximately equality of k-values for the different
distributions is of importance in its effect on the compari-
son of pushback and a known optimal estimate. We see this

comparison in plots of the relative efficiency of pushback

to a known good estimate, say wéb-biweight, against the log




95(73721)

: .159(42)
1.138(61309) )

4(38)

.804(43064) .159(49)

.814(44467) 157(45) :
.691(32383)
.708(34766) .156(45)

.155(45)
iy
D e
.146(34:\\\\
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.0593 0622 .0552 .0524
- (1): (1) {0 0
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.202

! 2 300 WA it .
3 (1350) (591) (518) (327) (38)

.0670(2)
.0666(2)

.0632(1)
.0634(1)

.0624(0)
.0629(0)

.0673({2)
0669(2

.0642(2)
.0645(2)

.0666(11)
.0666(11

Figure 3: Variance and variance of variance x 106
(in parentheses) of MJR-Gaus-pushbsack
} wh=-biweight and MJR-log-pushback
¥ wh-biweight
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.0614(0)
.0621(0)

.0622(0)
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.0740(41)
.0756(43)

c
Figure 4: Variance and variance of variance x 10
(in parentheses) of MJR-Gaus-pushhack
%-biweight and MJR-log pushback 2-biweight

) o2~ ceYTeprpr e




— W

- 17 -
of the pushback constant, log k. Consider

E = max{min{rel eff}} ,
k Q

where Q is the set of distributions specified, as a measure
of the performance of the pushback. Approximately equal
optimum k-values across distributions will help to keep E
high by preventing the relative efficiency plot for one or
more distributions from plunging while the other plots

remain high.

Clearly, investigation into the effect of a particular
scale estimate and {a(i)} distribution is necessary for tun-
ing and understanding of the procedure. We first consider
alternative scale estimates, Figure 5 shows the MAD-Gaus-
pushback median variances and the MAD-logistic—-pushback

median variances, in that order. (Some of the k values

shown here are approximate. Each of .4, .8, 1.0, 1.2, and
2.0 is divided by .6745 and the rounded values .6, 1.2, 1.5,
1.8, and 3.0 are shown in figure 5.) Figures 6 and 7 show
similar results for wé-biweight and 9-biweight, with figure
6 again showing approximate k-values. From these values and

those in table 5, we see again that the variances when Gaus-

sian {a(i)} are used are better than or very close to the

variances when logistic {a(i)} are used.

Given the results discussed above, that when s = MAD or
MJR, and for the median and wé-biweight, Gauss.ai. {a(i)}

yield procedures which generally have smaller variances than
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Fiqure 5: Variance and variance of variance x 10

(in parentheses) of MAD-Gaus-pushback
median and MAD-log-pushback mediant®

*k-values a2re appnroximeste; see note in text.
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894731947)
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.495(6368)
.470(5881)

.421(3628)
.406(3450)

.349(1678)
.342(1623)

.292(231)
.292(214)
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.0667(2)

.0656(1)
.0662(1)

.0637(1)
.0641(1)

.0639(0)
.0636(0)

]
. . a
Figure 6: Variance and variance of variance x 10 ;

(in parentheses) of MAD-Gaus-pushhack
wh-biweight and MAD-log-pushback wfR-hiweight?*

*k-values are apnroximate; see note in text,
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those in which logistic {a(i)} are used, we consider a third
form of {a(i)}, cosine-bell {a(i)}. Figures 8 and 9 give
results for the MJR-cob-pushback median and wé6-biweight.
Table 5 shows smaller variances for cosine-bell {a(i)} than
for Gaussian {a(i)} at optimum k-values, but that the
optimum k-values for the cosine-bell {a(i)} are more spread
than those for Gaussian {a(i)}. Figures 10 and 11 show
plots of the relative efficiency of the pushback to wé6-
biweight against the log pushback constant, 1n k, for the
MJR-Gaus-~-pushback median (Figure 10) and the MJR-cob-
pushback median (Figure 1l1). Relative efficiency is again
(variance wé6-biweight)/ (variance pushback) for the particu-
lar form of the pushback‘being studied. The cosine-bell
version has a slightly higher maximin relative efficiency
(82% vs. 81%). In both cases, however, the slash curve
keeps the values low by not attaining its maximum at a value
of ln k near the maximizing 1ln k of the other distributions.
Since cosine-bell and Gaussian {a(i)} have very close per-
formance, we will continue testing with the more readily

accepted norm, the Gaussian case.

Returning to our comparison of scale estimates, we look
at the results for P%AD-Gaus-pushback median and P%AD-Gaus-
pushback wé6-biweight where P%AD is the scale estimate
defined as the value at the lower P percent point of the
absolute deviations from the median, {ly(i)-med{y(i)}l}..
The P values used were 37.5, 45, 50 (i.e., the MAD), 55, 70,

75, 80, 85, and 90. The variances for these pushback forms
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are shown in tables 3 and 4 for the P%AD-Gaus-pushback
median and P%AD-Gaus-pushback wé-biweight, respectively.
Figures 12-20 show relative efficiency plots for the P%AD-
Gaus-pushback median against 1ln k, where relative efficiency
is again defined with respect to the wé6-biweight. The fol-

lowing table shows the values of max{min(rel eff)} for the
k Q
various values of P used in P%AD.

P used in P%AD
as scale estimate max{min(rel eff)}

37.5 80
45 85
50 88
55 89
70 83
75 83
80 72
85 54
90 -

For each pushback listed in the table, Gaussian {a(i)} were
used. We see that the pushback with s = 55%AD performs well

in comparison to wé6-biweight, achieving 89% or higher rela-

tive efficiency for all distributions considered.
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} 5. Conclusions from the Simulations

The results described in section 4 and the requirement
of simplicity of the pushback procedure provide preliminary

answers to the following question:
3 What choices of
i ¢ location estimate,
. { ¢ scale estimate, and

! ¢ {a(i)} distrubution

R LB i i

i yield good performance for the associatedlpushback pro-

cedure while still maintaining its simplicity?

Lo

Nk ki diE ¢

Gaussian {a(i)} were shown to perform better than

logistic {a(i)} for s = MJR, and MAD with T = median, and

wé-biweight. The Gaussian central order-statistic values

also were shown to have performance very close to that of
cob {a(i)} for s = MJR with T =median. We choose Gaussian
{a(i)} as the central order-statistic values because of
their performance and the wide acceptance of Gaussianity as

the norm against which we judge other distributions.

P The extensive simulations were done for T = median

y rather than T = wé6-biweight or 9-biweight because of a

preference for simplicity in procedure. Also, since the

wé-biweight exhibits good performance, it is unlikely that

i modifications of it will have marked decreases in variance
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(see table 5).

The scale estimate s = 55%AD, when used with T = median
and Gaussian {a(i)} achieves > 89% of the efficiency of the
wé-biweight (Figure 15). This relative efficiency is higher
than those for the other scale choices tested when used with

Gaussian {a(i)} and the median as the location estimate.

What the conclusions indicate then is, first, that
Gaussian {a(i)} are a good form of central order-statistic
values. This is because most data are Gaussian in the
center. This choice makes it possible to find a line of the
form z(i) = kes-+a(i), where s = P%AD, which is parallel to
the central P% of the data. The value of P will depend on
the sampling situation. Second, we see that a good choice
of scale estimate is the PRAD where P=55. This choice is a
maxi-min choice since our criteria for performance is that
the five distributions, Gaussian, OWG, mix, slash, and
slacu, all exhibit good performance at the same value of k
using this choice of s. The residuals of the data from the
line specified by these choices of s and {a(i)} are then
well-enough behaved for each of the five distributions that
the media applied to these residuals, the pushback median,

achieves good performance relative to the wé-biweight.

The simulation conclusions discussed thus far are based
on overall descriptions of the behavior of the pushback pro-

cedures. Variances based on the 500 samples of size 20 for

the various pushback procedures are compared as are the
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efficiencies relative to wé-biweight.

We would like to look at the behavior of a specific
pushback for particular data configurations in order to both
understand the procedure and to fine-tune the procedure. To
do this we need the optimum estimate for the particular data
configuration. Then identifying data configurations where
the pushback performs poorly in comparison to the optimum
estimate may indicate the tuning necessary to improve the
performance of the procedure. We would also like to deter-
mine the minimum attainable variance for a particular sam-
pling situation and the maximum attainable polyefficiency
over several sampling situations in order to determine effi-
ciencies relative to this optimum. Configural sampling and
configural polysampling provide a method for achieving the
analysis discussed in this paragraph. The post-configural

polysampling pushback results are discussed in (Krystinik

(1981)).
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